A Quick Peek at C++11 & 14 J

Rex Kerr

rk-logix, inc.

October 3, 2015

Ark-logix

quality software

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 1/41

Why are we here? Afb"‘igiim,e

C++11 feels like a new language.

— Bjarne Stroustrup

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 2/41

Some HiStOfy Ark-logix

= quality software

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)

| R

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

1 4
“ File System TS

Lbrary TR (aka Ts) b Fundamentals TS

Parallelism TS Array TS
Concepts TS Networking TS

Performance TR

Tx Memory TS Concurrency TS

https.//isocpp.org/std/status

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 3/41

A Quick Preview Ark-logix

= quality software

Before:
i std:::map<std::string,
2 std: :vector<std::auto_ptr<std::pair<int, float> > > > m;
3/%...%/

4 for (std::map<std::string,
std: :vector<std::auto_ptr<std::pair<int, float> > >

>::iterator it = m.begin(); it != m.end(); ++it)
5 {
6 // use it
7}
After:

i std: :map<std::string,

std: :vector<std::unique_ptr<std::pair<int, float>>>> m;
2 /%o %/
3 for(const auto& v : m)
4 {
5 // use v
6

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 4/41

AW N

Another Preview Ark-logix

= quality software

Before:

std::vector<std::string> vs;

vs.push_back ("Hello, ");

vs.push_back ("my name ");

vs.push_back ("is Rex.");

std::cout << std::accumulate(vs.cbegin(), vs.cend(),
std::string ("CPP03: ")) << std::endl;

After:

auto strings = { "Hello, ", "my ", "name ", "is ", "Rex." };

using namespace std::literals;
std::cout << std::accumulate (cbegin(strings), cend(strings),
"CPP14: "s) << std::endl;

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 5/41

RAII Ark~|ogix

= quality software

Question: Are we all
familiar with the RAII
idiom?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 6/41

Smart Pointers Ark-logix

= quality software

A modern C++ programmer should (almost) never use
operator new NOr operator delete.

Is this controversial or surprising?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 7/41

Smart Pointers Ark-logix

= quality software

C++11 deprecated std: :auto_ptr in favor of new smart pointers.

* std::shared_ptr
° std::weak_ptr

* std::unique_ptr

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 8/41

std::auto_ptr Ark-logix

= quality software

Question: What was

wrong with
std::auto_ptr?
Why was it
deprecated and
replaced?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 9/41

Smart Pointers: std: : shared_ptr Ark~logix

= quality software

* std::shared_ptr is intended to be used when there is shared
ownership of an object.

* std::enable_shared_from_this mixin is useful for providing
pointers to self

Tip: Think in terms of ownership and lifetime semantics. Don’t think of
std::shared_ptr as C++'s garbage collection. std: :shared_ptr
is not the “big hammer” for use on all pointer screws.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 10/41

Creating std: : shared_ptr owned objects Ary-lggﬁjyﬁﬂwm

There is a factory function for creating std: : shared_ptr objects:
1// preferred
2 auto ptr = std::make_shared<foo>(1,2,3);
3

4 // avoid
5 std: :shared_ptr<foo> ptr (new foo(l,2,3));

Using the factory has multiple benefits over raw new:

+ Exception Safety

* Performance
+ WKWYL optimization

* one allocation vs. two
* cache locality

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 11/41

- o

Smart Pointers: std: :weak_ptr Arylogix

quality software

std: :weak_ptr is a non-owning ‘weak’ reference to an object owned
by a std: :shared_ptr.

std: :weak_ptr<int> wp;
{

auto sp = std::make_shared<int> (42);

wWp = sSp;
auto inner_sp = wp.lock();
assert (!wp.expired() && inner_sp &&
"both wp & inner_sp are valid");
}
auto outer_sp = wp.lock();
assert (wp.expired() && !outer_sp &&
"both wp & outer_sp are invalid");

* std::weak_ptr is useful for tracking the lifetime of an object
owned by a std: : shared_ptr without affecting its lifetime

* std: :weak_ptr helps to break cycles

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 12/41

Good, it’s not expired!

if ('wp_foo.expired())

{
auto sp_foo = wp_foo.lock();
sp_foo->do_something ()
}
Comments?
Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14

Ark~logix

- quality software

October 3, 2015 13/41

Good, it’s not expired! Ark-logix

if ('wp_foo.expired())

1

2 {

3 auto sp_foo = wp_foo.lock();
4

5 sp_foo->do_something ()

6 }

Comments?

This is NOT thread-safe! Just lock it and check the pointer:

1 auto sp_foo = wp_foo.lock();
2

3 if (sp_foo)

4 {

5 sp_foo->do_something ()

6 }

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015

quality software

13/41

Be careful with std: :weak_ptr Ary'logix

quality software

WARNING

When using std: :make_shared, long lived std: :weak_ptr
objects can prevent deallocation of the memory block.

(the destructor is still run deterministically when the last
std::shared_ptr goes out of scope)

WARNING

std: :make_shared can hurt performance by introducing false
sharing.

| A\

\

The lesson here is that you should be aware of how
std: :make_shared works and aware of your usage patterns and
choose appropriately.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 14/41

[N NS I N)

std: :shared_ptr, not just for pointers! Arﬂl«logix

quality software

You can use std: : shared_ptr even with non-pointer types that
require a special function to destroy them.

{
std: :shared_ptr<lib::handle_t> ctx(lib::get_context (),
&lib::release_context);

// use ctx
ctx->do_something () ;

// lib::ReleaseContext (ctx) is called when exiting scope

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 15/41

[N NS I N)

std: :shared_ptr, not just for pointers! Arj«logix

quality software

You can use std: : shared_ptr even with non-pointer types that
require a special function to destroy them.

{
std: :shared_ptr<lib::handle_t> ctx(lib::get_context (),
&lib::release_context);

// use ctx
ctx->do_something () ;

// lib::ReleaseContext (ctx) is called when exiting scope

}

Unfortunately you cannot specify a custom deleter when using
std: :make_ shared

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 15/41

0o N O g b~ W N =

std: :shared_ptr, for generic scope exit Ar_lologix

quality software

You can use std: : shared_ptr to ensure that something happens
on scope exit.

{

std::shared_ptr<void> at_exit (nullptr, [] (auto)
{
std::cout << "Exiting scope..." << std::endl;
}) i
std::cout << "Running stuff in scope...\n";

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 16/41

o N o AW N =

std: :shared_ptr, for generic scope exit Arylogix

quality software

You can use std: : shared_ptr to ensure that something happens
on scope exit.

{

std::shared_ptr<void> at_exit (nullptr, [] (auto)
{
std::cout << "Exiting scope..." << std::endl;
}) i
std::cout << "Running stuff in scope...\n";
}
Output:

Running stuff in scope...
Exiting scope...

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 16/41

Here Be NULL Dragons

What does the following code print?

void foo (long)
void foo (longx)

int main() {

long 1 = 42;
longx pl = &1;

foo (1) ;

foo(pl);
foo (NULL) ;

Rex Kerr (rk-logix, inc.)

A Quick Peek at C++11 & 14

{ std::cout << "long" << std::endl; }

{ std::cout << "ptr" << std::endl; }

October 3, 2015

Ark~logix

quality software

17 /41

Here Be NULL Dragons |rilogix

= quality software

What does the following code print?

1 void foo (long) { std::cout << "long" << std::endl; }
void foo(longx) { std::cout << "ptr" << std::endl; }

2

3

4 1int main () {

5 long 1 = 42;
6 longx pl = &1;
7

8

foo (1) ;
9 foo(pl);
10 foo (NULL) ;

Output:

long
ptr
long

Why?
Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 17 /41

NULL Ark~logix

= quality software

NULL is defined as an implementation-defined null pointer constant,
and is a macro. From sys/_types.h on my MacBook:

1 #ifdef __ cplusplus

2 #ifdef _ GNUG_ __

3 #define _ DARWIN_NULL _ null

4 #else /* ! _ GNUG__ =*/

5 #ifdef _ LP64_

6 #define _ DARWIN_NULL (OL)

7 #else /x ! __LP64___ x/

8 #define _ DARWIN_NULL O

9 fendif /*+ _ LP64__ */

10 #endif /x _ GNUG___ x/

11 #else /x ! _ cplusplus =/ // <——— 111
12 #define _ DARWIN_NULL ((void =*)0)
13 #endif /* __cplusplus =*/

Use of NULL and 0 for null pointers leads to potential ambiguity, and
was especially problematic for generic programming (templates).

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 18/41

nullptr and std: :nullptr_t Ark'logix

= quality software

C++11 provides a new std: :nullptr_t type and nullptr keyword
to avoid the above ambiguity.

V&Y
foo(l);
foo(pl);
foo (nullptr);

a A~ W N =

}
Output:

long
ptr
ptr

nullptr must always correspond with a pointer type.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 19/41

Leaks? Ark~|ogix

= quality software

Question: Is it
possible to leak
memory when using a
std::shared_ptr?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 20/ 41

...std::shared_ptr leaks... Aﬂ('logix

quality software

It is possible to create cycles that permanantly tie up resources and
lead to ‘leaked’” memory. Consider the following:

struct A;
struct Bj;

1
2
3
4 struct A : std::enable_shared_from this<A>

5 {

6 A(std::shared_ptr b) : b_(b) { }

7 ~A() { std::cout << "...destroying A..." << std::endl; }
8 std::shared_ptr b_;

9}

11 struct B : std::enable_shared_from this

12 {

13 ~B() { std::cout << "...destroying B..." << std::endl; }
14 std: :shared_ptr<A> a_;

15 };

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 21/41

.and... Ark~logix

= quality software

What happens?

i int main ()

4 auto a = std::make_shared<A>(std::make_shared ());
5

6 a->b_->a_ = a—->shared_from_this () ;

7

8 std::cout << "...created pointers..." << std::endl;

9 } // ...note the artificial scope...

0

1 std::cout << "...left scope..." << std::endl;

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 22/ 41

.and... Ark~logix

= quality software

What happens?

i int main ()

2 {
3 {
4 auto a = std::make_shared<A>(std::make_shared ());
5
6 a->b_->a_ = a—->shared_from_this () ;
7
8 std::cout << "...created pointers..." << std::endl;
9 } // ...note the artificial scope...
10
11 std::cout << "...left scope..." << std::endl;
12 }
Output:

...created pointers...
...left scope...

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 22/ 41

.and... Ark~logix

= quality software

What happens?
1 int main ()
2 {
3 {

4 auto a = std::make_shared<A>(std::make_shared ());
5
6 a->b_->a_ = a—->shared_from_this () ;
7
8 std::cout << "...created pointers..." << std::endl;
9 } // ...note the artificial scope...
10
11 std::cout << "...left scope..." << std::endl;
12 }
Output:

...created pointers...
...left scope...

Notice that it never said ‘... destroying A...’ nor ‘... destroying B. ..
Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 22/ 41

std::unique_ptr Arl(-logix

quality software

std: :unique_ptr is a non-reference counting smart pointer for use
when there is no shared ownership of the data.

std: :unique_ptr should be your goto smart pointer when possible.

* semantic correctness (say what you mean)
* no reference counting overhead

There is also a std: :make_unique factory, but it was not added until
C++14.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 23/ 41

lambda expressions |rilogix

quality software

C++11 added lambda expressions, sometimes called ‘anonymous
functions’. The general form is as follows:

i [capture-list] (params) mutable exception attribute -> ret
{ body }

Many of the items are optional:
+ capture list can be empty, but must be present
+ params list can be left out in some cases
+ mutable keyword if it is not mutable
+ function attributes are optional
* return type can be auto-deduced in some cases

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 24/ 41

2
3
4
5
6
7
8
9
10

lambda example |rilogix

What happens?
iauto x = 1;
auto xref_plus_y = [&] (int y) { return x + y; };
auto xval_plus_y = [=] (int y) { return x + y; };
std::cout << xref plus_y(4) << '’ 7;
std::cout << xval plus_y(4) << 7" 75
X = 2;
std::cout << xref _plus_y(4) << 7’ 7;
std::cout << xval_plus_y(4) << std::endl;

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015

quality software

25/41

lambda example |rilogix

= quality software

What happens?
iauto x = 1;
2
3auto xref_plus_y = [&] (int y) { return x + y; };
4auto xval_plus_y = [=] (int y) { return x + y; };
5
6 std::cout << xref _plus_y(4) << ' 7;
7 std::cout << xval_plus_y(4) << ' 7,
8xX = 2;
9 std::cout << xref_plus_y(4) << 7’ 7;
10 std::cout << xval_plus_y(4) << std::endl;
Output:
5565

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 25/ 41

lamb-do & lamb-don’t Arf"eg?;ﬂwa,e

+ Lambda expressions make it MUCH easier to use standard
algorithms

* Alocal lambda is great for reducing code duplication

+ Too much of a good thing can be bad

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 26/ 41

You've been a very naught lambda! Ark~logix

= quality software

A bad lambda example:

class foo {
foo ()

{

some_signal.connect ([](/+ signal data */)
{ /* 46 line signal handler */
1) i

some_other_signal.connect([](/* signal data */)
{ /x 18 line signal handler =/
1) i

yet_another_signal.connect([](/* signal data x/)
{ /x 32 line signal handler =/
1)

*/

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 27/ 41

lambda improvements in C++14 |rilogix

= quality software

C++14 made lambda expressions even easier to use.

* generic lambdas (auto parameter type deduction)

i for_each (begin(v), end(v), [](auto i) { cout << 1i; });

* loosened return type deduction rules

« C++11 : return type automatically deduced iff the body consisted of
nothing but a single return statement with an expression, otherwise

void.
* C++14 : return type is deduced from return statements as if for a
function whose return type is declared auto.

Note that lambda expresssions don’t add any new functionality, it's
merely ‘syntactic sugar’ that eases the process of creating function
objects.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 28/ 41

keyword auto |rilogix

= quality software

The keyword auto has undergone a lot of changes:

* no longer legal as a storage class specifier (C++11)

void foo(auto int); // no longer legal

+ can now be used for automatic type deduction (C++11)

auto sp = std::make_shared<foo>();
autoé& tr get_thingref () ;
auto const v = get_value();

w N

+ can now be used to specify trailing return types (C++11)

auto foo() —> bool; // equivalent to bool foo();

+ automatic return type deduction, even for non-lambda (C++14)

auto foo() { return 3+2; } // returns decltype (3+2), or int

+ can be used for generic lambdas (C++14)

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 29/ 41

range-based for loops |rilogix

= quality software

New range-based for loop syntax makes it easier to perform an
operation on each item in a collection.

for (range_declaration:range_expression)
loop_statement

It can be used with standard containers. ..

std:vector<int> v = {0,1,2,3,4};

for(auto const 1 : v) { std::cout << 1 << 7 7; }
...arrays

int a[] = {0,1,2,3,4};

for(auto const i : a) { std::cout << i << 7 7; }

...and initializer lists (not covered yet)

for(auto const i : {0,1,2,3,4}) { std::cout << i << " ’; }

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 30/ 41

non-member std: :begin/std: :end Ar}'logix

quality software

New non-member std: :begin & std: :end functions make it easier
to write generic and maintainable code that doesn’t care about the
container type:

C++98

i std::for_each(v.begin(), v.end(), &foo);
C++11

i std::for_each (begin(v), end(v), &foo);

2 // note the lack of std:: —-- using ADL

C++14 also adds non-member cbegin and cend, which were not
available in C++11.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 31/41

Easier to write maintainable code? Ark~logix

= quality software

Question: How does
non-member
std::begin &
std: :end make it
eaiser to write more
generic and
maintanable code?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 32/ 41

Fail Early, Fail Fast! \rktogix

Detecting errors at runtime is good. Detecting them at compile time is
even better!

1 namespace hardcoded { constexpr auto x_dim() { return 800; } }
2 /%, .. %/

3
4 static_assert (hardcoded: :x_dim() == 832,
5 "This 3rd party library won’t work if x_dim isn’t 832!");
6 foo (hardcoded: :x_dim(), hardcoded::y_dim());
Result:
% clang++ --std=c++14 static_assert.cpp

static_assert.cpp:12:1: error: static_assert failed "This 3rd party library won’t work if x_dim is
static_assert (hardcoded::x_dim() == 832,

1 error generated.

The message string cannot be dynamically created (must be knowable
at compile time), and will be optional in C++17.

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 33/ 41

That’s C|8.88y! Ark~logix

struct foo {

foo () = default;
foo (foo&&) noexcept = default;
~foo () noexcept = default;
foo (const fooé&) = delete;
foo& operator=(const foo&) = delete;
bi
void fn (foo&&) {}
int main () {
foo £;
// foo f2 = f; <-- won’t compile
// error: call to deleted constructor of ’foo’
// foo f£3; f£3=f; <-— won’t compile
// error: overload resolution selected deleted operator ’='
fn (std: :move (f)) ;
}

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015

quality software

34/41

Better? Ark~|ogix

= quality software

Question: In what
ways is =delete
better than making
the method private?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 35/ 41

© 0 N OO A W N =

That's Super-Classy!

Any comments on this code?

struct B
{
virtual void foo () const {}
}i
struct D : B
{
virtual void foo () {}
}i

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14

October 3, 2015

Ark~logix

quality software

36 /41

That's Super-Classy! |rilogix

= quality software

C++11 has some comments about it!

struct B
{

virtual void foo () const {}
}i

struct D : B
{

0o N O g b~ W N =

virtual void foo () override {}

9 // error: ’foo’ marked ’override’ but does not
10 // override any member functions

"}

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 37/41

That's Super-Classy!

‘Sealing’ a method or class with final

struct B {

virtual void foo () const {};

}i

struct D : B {

virtual void foo ()

}i

struct D2 final

D {

virtual void foo () const override {}

// error:

declaration of ’foo’

function

}i

struct D3 : D2 {};
// error:

Rex Kerr (rk-logix, inc.)

base D2’ is marked

A Quick Peek at C++11 & 14

const override final { }

overrides a ’final’

"final’

October 3, 2015

Ark~logix

quality software

38 /41

Literally!

Ark~logix

= quality software

New user defined literals, and some standard ones as well. Literals
allow for cleaner syntax while avoiding errors:

1 using namespace std::literals;

2
3
4

N o o

std::chrono: :seconds
auto

auto

// auto

auto

Rex Kerr (rk-logix, inc.)

sl
s2
s3
s4
s5

= {30};

= 30s;

= sl + s2;

= sl + 30; <-— compilaton error...
= 1h + sl; // <-— this is OK!

A Quick Peek at C++11 & 14 October 3, 2015 39/41

Standard Literals Ark-logix

= quality software

Standard library

The following literal operators are defined in the standard library
Defined in inline namespace std::literals::complex_literals
operator”"if
operator""i (C++14)
operator”"il
Defined in inline namespace std::literals::chrono_literals
A std::chrono::duration literal representing hours

A std::complex literal representing pure imaginary number
(function)

operator""h (C++14)

(function)

operator”"min (C++14) A stq: :chrono: :duration literal representing minutes
(function)

operator"s (C++14) A stq: :chrono: :duration literal representing seconds
(function)

operator""ms (C++14) A stt;l: :chrono: :duration literal representing milliseconds
(function)

operator”"us (C++14) A stt':l: :chrono: :duration literal representing microseconds
(function)

operator”"ns (C++14) éu:;cttiio:n;chrono: :duration literal representing nanoseconds

Defined in inline namespace std::literals::string_literals
Converts a character array literal to basic_string

operator'"s (C++14) (Function)

http://en.cppreference.com/w/cpp/language/user_literal

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 40/ 41

| want to do it too! Ark-logix

= quality software

i struct gigawatts

2 {

3 explicit gigawatts (long double gw) : gw_ (gw) {}

4 long double value() const { return gw_; }

5 private:

6 long double gw_;

7}

8

9 auto operator "" _GW(long double gw) { return gigawatts(gw); }

11 int main ()

12 {

13 auto flux_power = 1.21_GW;

14 std::cout << flux_power.value() << u8" jigawatts\U0000203D"
<< std::endl;

15 std::cout << R" ("Great Scott!" ——\Dr. Emmet Brown\)" <<
std::endl;

Raw string literals mess up the IATEX syntax highlighting!

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 41/ 41

