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Why are we here? Afb"‘igiim,e

C++11 feels like a new language.

— Bjarne Stroustrup
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Some HiStOfy Ark-logix

= quality software

C++98 C++03 C++11 C++14 C++17
(major) (TC, bug fixes only) (major) (minor) (major)

| R

98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18

1 4
“ File System TS

Lbrary TR (aka Ts) b Fundamentals TS

Parallelism TS Array TS
Concepts TS Networking TS

Performance TR

Tx Memory TS Concurrency TS

https.//isocpp.org/std/status
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A Quick Preview Ark-logix

= quality software

Before:
i std:::map<std::string,
2 std: :vector<std::auto_ptr<std::pair<int, float> > > > m;
3/%...%/

4 for ( std::map<std::string,
std: :vector<std::auto_ptr<std::pair<int, float> > >

>::iterator it = m.begin(); it != m.end(); ++it )
5 {
6 // use it
7}
After:

i std: :map<std::string,

std: :vector<std::unique_ptr<std::pair<int, float>>>> m;
2 /%o %/
3 for( const auto& v : m )
4 {
5 // use v
6
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Another Preview Ark-logix

= quality software

Before:

std::vector<std::string> vs;

vs.push_back ("Hello, ");

vs.push_back ("my name ");

vs.push_back ("is Rex.");

std::cout << std::accumulate(vs.cbegin(), vs.cend(),
std::string ("CPP03: ")) << std::endl;

After:

auto strings = { "Hello, ", "my ", "name ", "is ", "Rex." };

using namespace std::literals;
std::cout << std::accumulate (cbegin(strings), cend(strings),
"CPP14: "s) << std::endl;
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RAII Ark~|ogix

= quality software

Question: Are we all
familiar with the RAII
idiom?
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Smart Pointers Ark-logix

= quality software

A modern C++ programmer should (almost) never use
operator new NOr operator delete.

Is this controversial or surprising?
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Smart Pointers Ark-logix

= quality software

C++11 deprecated std: :auto_ptr in favor of new smart pointers.

* std::shared_ptr
° std::weak_ptr

* std::unique_ptr
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std::auto_ptr Ark-logix

= quality software

Question: What was

wrong with
std::auto_ptr?
Why was it
deprecated and
replaced?
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Smart Pointers: std: : shared_ptr Ark~logix

= quality software

* std::shared_ptr is intended to be used when there is shared
ownership of an object.

* std::enable_shared_from_this mixin is useful for providing
pointers to self

Tip: Think in terms of ownership and lifetime semantics. Don’t think of
std::shared_ptr as C++'s garbage collection. std: :shared_ptr
is not the “big hammer” for use on all pointer screws.
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Creating std: : shared_ptr owned objects Ary-lggﬁjyﬁﬂwm

There is a factory function for creating std: : shared_ptr objects:
1// preferred
2 auto ptr = std::make_shared<foo>(1,2,3);
3

4 // avoid
5 std: :shared_ptr<foo> ptr (new foo(l,2,3));

Using the factory has multiple benefits over raw new:

+ Exception Safety

* Performance
+ WKWYL optimization

* one allocation vs. two
* cache locality
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Smart Pointers: std: :weak_ptr Arylogix

quality software

std: :weak_ptr is a non-owning ‘weak’ reference to an object owned
by a std: :shared_ptr.

std: :weak_ptr<int> wp;
{

auto sp = std::make_shared<int> (42);

wWp = sSp;
auto inner_sp = wp.lock();
assert ( !wp.expired() && inner_sp &&
"both wp & inner_sp are valid" );
}
auto outer_sp = wp.lock();
assert ( wp.expired() && !outer_sp &&
"both wp & outer_sp are invalid" );

* std::weak_ptr is useful for tracking the lifetime of an object
owned by a std: : shared_ptr without affecting its lifetime

* std: :weak_ptr helps to break cycles
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Good, it’s not expired!

if ('wp_foo.expired())

{
auto sp_foo = wp_foo.lock();
sp_foo->do_something ()
}
Comments?
Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14
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Good, it’s not expired! Ark-logix

if ('wp_foo.expired())

1

2 {

3 auto sp_foo = wp_foo.lock();
4

5 sp_foo->do_something ()

6 }

Comments?

This is NOT thread-safe! Just lock it and check the pointer:

1 auto sp_foo = wp_foo.lock();
2

3 if (sp_foo)

4 {

5 sp_foo->do_something ()

6 }
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Be careful with std: :weak_ptr Ary'logix

quality software

WARNING

When using std: :make_shared, long lived std: :weak_ptr
objects can prevent deallocation of the memory block.

(the destructor is still run deterministically when the last
std::shared_ptr goes out of scope)

WARNING

std: :make_shared can hurt performance by introducing false
sharing.

| A\

\

The lesson here is that you should be aware of how
std: :make_shared works and aware of your usage patterns and
choose appropriately.
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std: :shared_ptr, not just for pointers! Arﬂl«logix

quality software

You can use std: : shared_ptr even with non-pointer types that
require a special function to destroy them.

{
std: :shared_ptr<lib::handle_t> ctx(lib::get_context (),
&lib::release_context);

// use ctx
ctx->do_something () ;

// lib::ReleaseContext (ctx) is called when exiting scope
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[N NS I N )

std: :shared_ptr, not just for pointers! Arj«logix

quality software

You can use std: : shared_ptr even with non-pointer types that
require a special function to destroy them.

{
std: :shared_ptr<lib::handle_t> ctx(lib::get_context (),
&lib::release_context);

// use ctx
ctx->do_something () ;

// lib::ReleaseContext (ctx) is called when exiting scope

}

Unfortunately you cannot specify a custom deleter when using
std: :make_ shared
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std: :shared_ptr, for generic scope exit Ar_lologix

quality software

You can use std: : shared_ptr to ensure that something happens
on scope exit.

{

std::shared_ptr<void> at_exit (nullptr, [] (auto)
{
std::cout << "Exiting scope..." << std::endl;
}) i
std::cout << "Running stuff in scope...\n";
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std: :shared_ptr, for generic scope exit Arylogix

quality software

You can use std: : shared_ptr to ensure that something happens
on scope exit.

{

std::shared_ptr<void> at_exit (nullptr, [] (auto)
{
std::cout << "Exiting scope..." << std::endl;
}) i
std::cout << "Running stuff in scope...\n";
}
Output:

Running stuff in scope...
Exiting scope...
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Here Be NULL Dragons

What does the following code print?

void foo (long)
void foo (longx)

int main() {

long 1 = 42;
longx pl = &1;

foo (1) ;

foo(pl);
foo (NULL) ;

Rex Kerr (rk-logix, inc.)

A Quick Peek at C++11 & 14

{ std::cout << "long" << std::endl; }

{ std::cout << "ptr" << std::endl; }

October 3, 2015

Ark~logix

quality software
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Here Be NULL Dragons |rilogix

= quality software

What does the following code print?

1 void foo (long) { std::cout << "long" << std::endl; }
void foo(longx) { std::cout << "ptr" << std::endl; }

2

3

4 1int main () {

5 long 1 = 42;
6 longx pl = &1;
7

8

foo (1) ;
9 foo(pl);
10 foo (NULL) ;

Output:

long
ptr
long

Why?
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NULL Ark~logix

= quality software

NULL is defined as an implementation-defined null pointer constant,
and is a macro. From sys/_types.h on my MacBook:

1 #ifdef __ cplusplus

2 #ifdef _ GNUG_ __

3 #define _ DARWIN_NULL _ null

4 #else /* ! _ GNUG__ =*/

5 #ifdef _ LP64_

6 #define _ DARWIN_NULL (OL)

7 #else /x ! __LP64___ x/

8 #define _ DARWIN_NULL O

9 fendif /*+ _ LP64__ */

10 #endif /x _ GNUG___ x/

11 #else /x ! _ cplusplus =/ // <——— 111
12 #define _ DARWIN_NULL ( (void =*)0)
13 #endif /* __cplusplus =*/

Use of NULL and 0 for null pointers leads to potential ambiguity, and
was especially problematic for generic programming (templates).
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nullptr and std: :nullptr_t Ark'logix

= quality software

C++11 provides a new std: :nullptr_t type and nullptr keyword
to avoid the above ambiguity.

V&Y
foo(l);
foo(pl);
foo (nullptr);

a A~ W N =

}
Output:

long
ptr
ptr

nullptr must always correspond with a pointer type.
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Leaks? Ark~|ogix

= quality software

Question: Is it
possible to leak
memory when using a
std::shared_ptr?
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...std::shared_ptr leaks... Aﬂ('logix

quality software

It is possible to create cycles that permanantly tie up resources and
lead to ‘leaked’” memory. Consider the following:

struct A;
struct Bj;

1
2
3
4 struct A : std::enable_shared_from this<A>

5 {

6 A(std::shared_ptr<B> b) : b_(b) { }

7 ~A() { std::cout << "...destroying A..." << std::endl; }
8 std::shared_ptr<B> b_;

9}

11 struct B : std::enable_shared_from this<B>

12 {

13 ~B() { std::cout << "...destroying B..." << std::endl; }
14 std: :shared_ptr<A> a_;

15 };
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.and... Ark~logix

= quality software

What happens?

i int main ()

4 auto a = std::make_shared<A>( std::make_shared<B> () );
5

6 a->b_->a_ = a—->shared_from_this () ;

7

8 std::cout << "...created pointers..." << std::endl;

9 } // ...note the artificial scope...

0

1 std::cout << "...left scope..." << std::endl;
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.and... Ark~logix

= quality software

What happens?

i int main ()

2 {
3 {
4 auto a = std::make_shared<A>( std::make_shared<B> () );
5
6 a->b_->a_ = a—->shared_from_this () ;
7
8 std::cout << "...created pointers..." << std::endl;
9 } // ...note the artificial scope...
10
11 std::cout << "...left scope..." << std::endl;
12 }
Output:

...created pointers...
...left scope...
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.and... Ark~logix

= quality software

What happens?
1 int main ()
2 {
3 {

4 auto a = std::make_shared<A>( std::make_shared<B> () );
5
6 a->b_->a_ = a—->shared_from_this () ;
7
8 std::cout << "...created pointers..." << std::endl;
9 } // ...note the artificial scope...
10
11 std::cout << "...left scope..." << std::endl;
12 }
Output:

...created pointers...
...left scope...

Notice that it never said ‘... destroying A...’ nor ‘... destroying B. ..
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std::unique_ptr Arl(-logix

quality software

std: :unique_ptr is a non-reference counting smart pointer for use
when there is no shared ownership of the data.

std: :unique_ptr should be your goto smart pointer when possible.

* semantic correctness (say what you mean)
* no reference counting overhead

There is also a std: :make_unique factory, but it was not added until
C++14.
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lambda expressions |rilogix

quality software

C++11 added lambda expressions, sometimes called ‘anonymous
functions’. The general form is as follows:

i [ capture-list ] ( params ) mutable exception attribute -> ret
{ body }

Many of the items are optional:
+ capture list can be empty, but must be present
+ params list can be left out in some cases
+ mutable keyword if it is not mutable
+ function attributes are optional
* return type can be auto-deduced in some cases
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2
3
4
5
6
7
8
9
10

lambda example |rilogix

What happens?
iauto x = 1;
auto xref_plus_y = [&] (int y) { return x + y; };
auto xval_plus_y = [=] (int y) { return x + y; };
std::cout << xref plus_y( 4 ) << '’ 7;
std::cout << xval plus_y( 4 ) << 7" 75
X = 2;
std::cout << xref _plus_y( 4 ) << 7’ 7;
std::cout << xval_plus_y( 4 ) << std::endl;

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015
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lambda example |rilogix

= quality software

What happens?
iauto x = 1;
2
3auto xref_plus_y = [&] (int y) { return x + y; };
4auto xval_plus_y = [=] (int y) { return x + y; };
5
6 std::cout << xref _plus_y( 4 ) << ' 7;
7 std::cout << xval_plus_y( 4 ) << ' 7,
8xX = 2;
9 std::cout << xref_plus_y( 4 ) << 7’ 7;
10 std::cout << xval_plus_y( 4 ) << std::endl;
Output:
5565
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lamb-do & lamb-don’t Arf"eg?;ﬂwa,e

+ Lambda expressions make it MUCH easier to use standard
algorithms

* Alocal lambda is great for reducing code duplication

+ Too much of a good thing can be bad
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You've been a very naught lambda! Ark~logix

= quality software

A bad lambda example:

class foo {
foo ()

{

some_signal.connect ( []( /+ signal data */ )
{ /* 46 line signal handler */
1) i

some_other_signal.connect( []( /* signal data */ )
{ /x 18 line signal handler =/
1) i

yet_another_signal.connect( []( /* signal data x/ )
{ /x 32 line signal handler =/
1)

*/
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lambda improvements in C++14 |rilogix

= quality software

C++14 made lambda expressions even easier to use.

* generic lambdas (auto parameter type deduction)

i for_each (begin(v), end(v), [](auto i) { cout << 1i; });

* loosened return type deduction rules

« C++11 : return type automatically deduced iff the body consisted of
nothing but a single return statement with an expression, otherwise

void.
* C++14 : return type is deduced from return statements as if for a
function whose return type is declared auto.

Note that lambda expresssions don’t add any new functionality, it's
merely ‘syntactic sugar’ that eases the process of creating function
objects.
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keyword auto |rilogix

= quality software

The keyword auto has undergone a lot of changes:

* no longer legal as a storage class specifier (C++11)

void foo(auto int); // no longer legal

+ can now be used for automatic type deduction (C++11)

auto sp = std::make_shared<foo>();
autoé& tr get_thingref () ;
auto const v = get_value();

w N

+ can now be used to specify trailing return types (C++11)

auto foo() —> bool; // equivalent to bool foo();

+ automatic return type deduction, even for non-lambda (C++14)

auto foo() { return 3+2; } // returns decltype (3+2), or int

+ can be used for generic lambdas (C++14)
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range-based for loops |rilogix

= quality software

New range-based for loop syntax makes it easier to perform an
operation on each item in a collection.

for (range_declaration:range_expression)
loop_statement

It can be used with standard containers. ..

std:vector<int> v = {0,1,2,3,4};

for( auto const 1 : v) { std::cout << 1 << 7 7; }
...arrays

int a[] = {0,1,2,3,4};

for( auto const i : a) { std::cout << i << 7 7; }

...and initializer lists (not covered yet)

for( auto const i : {0,1,2,3,4} ) { std::cout << i << " ’; }
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non-member std: :begin/std: :end Ar}'logix

quality software

New non-member std: :begin & std: :end functions make it easier
to write generic and maintainable code that doesn’t care about the
container type:

C++98

i std::for_each(v.begin(), v.end(), &foo);
C++11

i std::for_each (begin(v), end(v), &foo);

2 // note the lack of std:: —-- using ADL

C++14 also adds non-member cbegin and cend, which were not
available in C++11.
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Easier to write maintainable code? Ark~logix

= quality software

Question: How does
non-member
std::begin &
std: :end make it
eaiser to write more
generic and
maintanable code?

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14 October 3, 2015 32/ 41



Fail Early, Fail Fast! \rktogix

Detecting errors at runtime is good. Detecting them at compile time is
even better!

1 namespace hardcoded { constexpr auto x_dim() { return 800; } }
2 /%, .. %/

3
4 static_assert (hardcoded: :x_dim() == 832,
5 "This 3rd party library won’t work if x_dim isn’t 832!");
6 foo (hardcoded: :x_dim(), hardcoded::y_dim());
Result:
% clang++ --std=c++14 static_assert.cpp

static_assert.cpp:12:1: error: static_assert failed "This 3rd party library won’t work if x_dim is
static_assert (hardcoded::x_dim() == 832,

1 error generated.

The message string cannot be dynamically created (must be knowable
at compile time), and will be optional in C++17.
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That’s C|8.88y! Ark~logix

struct foo {

foo () = default;
foo (foo&&) noexcept = default;
~foo () noexcept = default;
foo (const fooé&) = delete;
foo& operator=(const foo&) = delete;
bi
void fn (foo&&) {}
int main () {
foo £;
// foo f2 = f; <-- won’t compile
// error: call to deleted constructor of ’foo’
// foo f£3; f£3=f; <-— won’t compile
// error: overload resolution selected deleted operator ’='
fn (std: :move (f)) ;
}
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Better? Ark~|ogix

= quality software

Question: In what
ways is =delete
better than making
the method private?
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That's Super-Classy!

Any comments on this code?

struct B
{
virtual void foo () const {}
}i
struct D : B
{
virtual void foo () {}
}i

Rex Kerr (rk-logix, inc.) A Quick Peek at C++11 & 14
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That's Super-Classy! |rilogix

= quality software

C++11 has some comments about it!

struct B
{

virtual void foo () const {}
}i

struct D : B
{

0o N O g b~ W N =

virtual void foo () override {}

9 // error: ’foo’ marked ’override’ but does not
10 // override any member functions

"}
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That's Super-Classy!

‘Sealing’ a method or class with final

struct B {

virtual void foo () const {};

}i

struct D : B {

virtual void foo ()

}i

struct D2 final

D {

virtual void foo () const override {}

// error:

declaration of ’foo’

function

}i

struct D3 : D2 {};
// error:

Rex Kerr (rk-logix, inc.)

base D2’ is marked

A Quick Peek at C++11 & 14

const override final { }

overrides a ’final’

"final’
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Literally!

Ark~logix

= quality software

New user defined literals, and some standard ones as well. Literals
allow for cleaner syntax while avoiding errors:

1 using namespace std::literals;

2
3
4

N o o

std::chrono: :seconds
auto

auto

// auto

auto

Rex Kerr (rk-logix, inc.)

sl
s2
s3
s4
s5

= {30};

= 30s;

= sl + s2;

= sl + 30; <-— compilaton error...
= 1h + sl; // <-— this is OK!
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Standard Literals Ark-logix

= quality software

Standard library

The following literal operators are defined in the standard library
Defined in inline namespace std::literals::complex_literals
operator”"if
operator""i (C++14)
operator”"il
Defined in inline namespace std::literals::chrono_literals
A std::chrono::duration literal representing hours

A std::complex literal representing pure imaginary number
(function)

operator""h (C++14)

(function)

operator”"min (C++14) A stq: :chrono: :duration literal representing minutes
(function)

operator"s (C++14) A stq: :chrono: :duration literal representing seconds
(function)

operator""ms (C++14) A stt;l: :chrono: :duration literal representing milliseconds
(function)

operator”"us (C++14) A stt':l: :chrono: :duration literal representing microseconds
(function)

operator”"ns (C++14) éu:;cttiio:n;chrono: :duration literal representing nanoseconds

Defined in inline namespace std::literals::string_literals
Converts a character array literal to basic_string

operator'"s (C++14) (Function)

http://en.cppreference.com/w/cpp/language/user_literal
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| want to do it too! Ark-logix

= quality software

i struct gigawatts

2 {

3 explicit gigawatts (long double gw) : gw_ (gw) {}

4 long double value() const { return gw_; }

5 private:

6 long double gw_;

7}

8

9 auto operator "" _GW(long double gw) { return gigawatts(gw); }

11 int main ()

12 {

13 auto flux_power = 1.21_GW;

14 std::cout << flux_power.value() << u8" jigawatts\U0000203D"
<< std::endl;

15 std::cout << R" ("Great Scott!" ——\Dr. Emmet Brown\)" <<
std::endl;

Raw string literals mess up the IATEX syntax highlighting!
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